Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Open Repository and ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Database: The Journal of Biological Databases and Curation
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The TOXIN knowledge graph: supporting animal-free risk assessment of cosmetics

supporting animal-free risk assessment of cosmetics
Authors: Sepehri, Sara; Heymans, Anja; Win, Dinja De; Maushagen, Jan; Sanctorum, Audrey; Debruyne, Christophe; Rodrigues, Robim M; +4 Authors

The TOXIN knowledge graph: supporting animal-free risk assessment of cosmetics

Abstract

Abstract The European Union’s ban on animal testing for cosmetic products and their ingredients, combined with the lack of validated animal-free methods, poses challenges in evaluating their potential repeated-dose organ toxicity. To address this, innovative strategies like Next-Generation Risk Assessment (NGRA) are being explored, integrating historical animal data with new mechanistic insights from non-animal New Approach Methodologies (NAMs). This paper introduces the TOXIN knowledge graph (TOXIN KG), a tool designed to retrieve toxicological information on cosmetic ingredients, with a focus on liver-related data. TOXIN KG uses graph-structured semantic technology and integrates toxicological data through ontologies, ensuring interoperable representation. The primary data source is safety information on cosmetic ingredients from scientific opinions issued by the Scientific Committee on Consumer Safety between 2009 and 2019. The ToxRTool automates the reliability assessment of toxicity studies, while the Simplified Molecular Input Line Entry System (SMILES) notation standardizes chemical identification, enabling in silico prediction of repeated-dose toxicity via the implementation of the Organization for Economic Co-operation and Development Quantitative Structure–Activity Relationship Toolbox (OECD QSAR Toolbox). The ToXic Process Ontology, enriched with relevant biological repositories, is employed to represent toxicological concepts systematically. Search filters allow the identification of cosmetic compounds potentially linked to liver toxicity. Data visualization is achieved through Ontodia, a JavaScript library. TOXIN KG, filled with information for 88 cosmetic ingredients, allowed us to identify 53 compounds affecting at least one liver toxicity parameter in a 90-day repeated-dose animal study. For one compound, we illustrate how TOXIN KG links this observation to hepatic cholestasis as an adverse outcome. In an ab initio NGRA context, follow-up in vitro studies using human-based NAMs would be necessary to understand the compound’s biological activity and the molecular mechanism leading to the adverse effect. In summary, TOXIN KG emerges as a valuable tool for advancing the reusability of cosmetics safety data, providing knowledge in support of NAM-based hazard and risk assessments. Database URL: https://toxin-search.netlify.app/

Keywords

Sciences informatiques, Biochemistry, Genetics and Molecular Biology (all), Animal Testing Alternatives/methods, risk assessment, Quantitative Structure-Activity Relationship, Cosmetics/adverse effects, Cosmetics, Animal Testing Alternatives, Life sciences, Computer science, Risk Assessment, Engineering, computing & technology, Ingénierie, informatique & technologie, Cosmetics/chemistry, Agricultural and Biological Sciences (all), Sciences du vivant, Humans, Animals, Original Article, Information Systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold
Related to Research communities