Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A highly accurate differential evolution–particle swarm optimization algorithm for the construction of initial value problem solvers

Authors: I. Th. Famelis; A. Alexandridis; Ch. Tsitouras;

A highly accurate differential evolution–particle swarm optimization algorithm for the construction of initial value problem solvers

Abstract

ABSTRACTIn this work a new evolutionary computation technique is introduced for the construction of initial value solvers based on Runge–Kutta (RK) pairs. The derivation of RK pairs corresponds to solving a nonlinear optimization problem with a multimodal objective function in a high dimensional search space; additional difficulty stems from the fact that only solutions with accuracy at least equal to machine epsilon are acceptable. The proposed approach involves hybridizing a Differential Evolution (DE) strategy with elements from Particle Swarm Optimization (PSO) in order to produce a method for solving optimization problems with high accuracy. The resulting methodology is applied to two different problems of RK pair derivation of orders 5 and 4 and compared with standard DE techniques. Numerical experiments show that the proposed hybrid DE-PSO satisfies the strict accuracy requirements imposed by the particular problem, while outperforming its rivals.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!