Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Orviumarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Orvium
Article
Data sources: Orvium
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Orvium
Article
Data sources: Orvium
The Evolving Scholar
Article . 2023
Data sources: Crossref
The Evolving Scholar
Other literature type . 2023
Data sources: Datacite
https://doi.org/10.59490/65ea2...
Article . 2023 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.59490/65037...
Article . 2023 . Peer-reviewed
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification and Modeling of a Mountain Bike Front Suspension Subsystem Equipped with a Telescopic Fork and Tire Damping

Authors: Noah Schoeneck; James Sadauckas; Mark Nagurka;

Identification and Modeling of a Mountain Bike Front Suspension Subsystem Equipped with a Telescopic Fork and Tire Damping

Abstract

A key component in the mountain bike industry is the telescopic front suspension, which offers the advantage of improved performance when traversing obstacles, rough terrain, and high impact landings. Despite the popularity of telescopic forks in the market and their incorporation into vehicle level simulation, the details and modelling assumptions around this subsystem have received limited attention in the literature... This paper presents a system identification and modeling approach that promises a deeper understanding of the dynamic behavior of mountain bikes with telescopic front suspensions. The mountain bike front suspension subsystem is modelled initially using the classic quarter car model with the suspension and tire both included as second-order systems, each with spring and damper elements in a Kelvin-Voigt arrangement stacked in series. The paper then incrementally increases the complexity of the quarter car model by performing a parameterization study of the fork and tire. The model results are compared to data from an impact sled test of a telescopic mountain bike front suspension subsystem. The correlation between the quarter car model response and the test data varies with the complexity and inclusion of parameters suggesting that the inclusion of key parameters in the model is an important aspect of modeling the mountain bike front suspension system.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
bronze