Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Molecular...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Molecular Neuroscience
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Molecular Neuroscience
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Depressive Emotionality Moderates the Influence of the BDNF Val66Met Polymorphism on Executive Functions and on Unconscious Semantic Priming

Authors: Simon Sanwald; Christian Montag; Markus Kiefer;

Depressive Emotionality Moderates the Influence of the BDNF Val66Met Polymorphism on Executive Functions and on Unconscious Semantic Priming

Abstract

AbstractAutomatic semantic processing can be assessed using semantic priming paradigms. Individual differences in semantic priming have been associated with differences in executive functions. The brain-derived neurotrophic factor (BDNF) Val66Met (substitution of valine (Val) to methionine (Met) at codon 66) polymorphism has been shown to be associated with executive functions as well as depression. Depression-associated variables such as depressed mood also moderated the relationship between BDNF Val66Met and executive functions in previous work. In this study, we therefore aimed at investigating whether BDNF Val66Met genotype modulates masked and unmasked semantic priming as well as executive functions and whether sadness is a moderator of these associations. We collected data of N = 155 participants measuring reaction times (RTs) as well as error rates (ERs) in masked and unmasked semantic priming paradigms using a lexical decision task. We assessed the primary emotion of SADNESS using the Affective Neuroscience Personality Scale (ANPS) and working memory using digit span forward and backward tasks. Met+ carriers showed reduced RT priming and increased ER priming in the masked priming paradigm. Even though there was no direct association between BDNF Val66Met and executive functions, SADNESS significantly moderated the association between BDNF Val66Met and executive functions as well as masked RT priming. We suggest that Met+ individuals with low depressive tendencies have not only superior EF, but also a faster and more superficial processing style, compared with Val/Val homozygotes. However, in Met+ individuals, cognitive functioning exhibits a greater vulnerability to depressed emotionality compared with Val/Val homozygotes. Our study thus demonstrates how emotional and molecular genetic factors exert an interacting influence on higher-level cognition.

Related Organizations
Keywords

Adult, Male, Emotions, Mutation, Missense, AUTOMATIC SPREADING ACTIVATION, Memory, Short-term, INDIVIDUAL-DIFFERENCES, Polymorphism, Single Nucleotide, Brain-derived neurotrophic factor, Article, Executive functions, ATTENTIONAL MODULATION, Executive Function, WORKING-MEMORY, Persönlichkeit, Primary emotions, Repetition Priming, Humans, Female [MeSH] ; Personality/genetics [MeSH] ; Executive Function [MeSH] ; Polymorphism, Single Nucleotide [MeSH] ; Adult [MeSH] ; Humans [MeSH] ; Depression/physiopathology [MeSH] ; Repetition Priming [MeSH] ; Semantics [MeSH] ; Mutation, Missense [MeSH] ; Semantic priming ; Depression/genetics [MeSH] ; Article ; Depression ; Male [MeSH] ; Genetics ; Primary emotions ; Brain-Derived Neurotrophic Factor/genetics [MeSH] ; Depression/psychology [MeSH] ; Executive functions ; Emotions [MeSH], Nerve growth factors, Genetik, Depression; Genetics, Gefühl, HIPPOCAMPAL, Depression, Brain-Derived Neurotrophic Factor, info:eu-repo/classification/ddc/150, Brain, ELECTRICAL-STIMULATION, Semantics, Priming, Arbeitsgedächtnis, Female, STROOP INTERFERENCE, Semantic priming, NEUROTROPHIC FACTOR, Personality

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Green
hybrid