Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agritroparrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Agritrop
Article . 2010
Data sources: Agritrop
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
EcoHealth
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
EcoHealth
Article . 2011
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ecological Modeling of the Spatial Distribution of Wild Waterbirds to Identify the Main Areas Where Avian Influenza Viruses are Circulating in the Inner Niger Delta, Mali

Authors: Cappelle, Julien; Girard, Olivier; Fofana, Bouba; Gaidet, Nicolas; Gilbert, Marius;

Ecological Modeling of the Spatial Distribution of Wild Waterbirds to Identify the Main Areas Where Avian Influenza Viruses are Circulating in the Inner Niger Delta, Mali

Abstract

Predicting areas of disease emergence when no epidemiological data is available is essential for the implementation of efficient surveillance programs. The Inner Niger Delta (IND) in Mali is a major African wetland where >1 million Palearctic and African waterbirds congregate. Waterbirds are the main reservoir of Avian Influenza Viruses (AIV). Our objective was to model their spatial distribution in order to predict where these viruses would be more likely to circulate. We developed a generalized linear model (GLM) and a boosted regression trees (BRT) model based on total aerial bird counts taken in winter over 6 years. We used remotely sensed environmental variables with a high temporal resolution (10 days) to predict the spatial distribution of four waterbird groups. The predicted waterbird abundances were weighted with an epidemiological indicator based on the prevalence of low pathogenic AIV reported in the literature. The BRT model had the best predictive power and allowed prediction of the high variability of waterbird distribution. Years with low flood levels showed areas with a higher risk of circulation and had better spatial distribution predictions. Each year, the model identified a few areas with a higher risk of AIV circulation. This model can be applied every 10 days to evaluate the risk of AIV emergence in wild waterbirds. By taking into account the IND's ecological variability, it allows better targeting of areas considered for surveillance. This could enhance the control of emerging diseases at a local and regional scale, especially when resources available for surveillance programs are scarce.

Keywords

http://aims.fao.org/aos/agrovoc/c_24242, Influenza in Birds -- epidemiology -- virology, Population Dynamics, boosted regression trees, L73 - Maladies des animaux, modèle de simulation, Mali, animal sauvage, http://aims.fao.org/aos/agrovoc/c_24103, Models, Biological, emerging infectious diseases, Birds, Rivers, Models, Risk Factors, Anseriformes, http://aims.fao.org/aos/agrovoc/c_37934, http://aims.fao.org/aos/agrovoc/c_5083, Animals, Anseriformes -- virology, Influenzavirus aviaire, http://aims.fao.org/aos/agrovoc/c_8331, wild birds, Ecosystem, Population Density, AIV, http://aims.fao.org/aos/agrovoc/c_29740, oiseau aquatique, Sciences bio-médicales et agricoles, Biological, distribution models, Mali -- epidemiology, http://aims.fao.org/aos/agrovoc/c_4540, Influenza in Birds, surveillance, Regression Analysis, gestion du risque, distribution géographique, http://aims.fao.org/aos/agrovoc/c_9017

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!