
arXiv: 2509.21039
We explore the performance and portability of the novel Mojo language for scientific computing workloads on GPUs. As the first language based on the LLVM's Multi-Level Intermediate Representation (MLIR) compiler infrastructure, Mojo aims to close performance and productivity gaps by combining Python's interoperability and CUDA-like syntax for compile-time portable GPU programming. We target four scientific workloads: a seven-point stencil (memory-bound), BabelStream (memory-bound), miniBUDE (compute-bound), and Hartree-Fock (compute-bound with atomic operations); and compare their performance against vendor baselines on NVIDIA H100 and AMD MI300A GPUs. We show that Mojo's performance is competitive with CUDA and HIP for memory-bound kernels, whereas gaps exist on AMD GPUs for atomic operations and for fast-math compute-bound kernels on both AMD and NVIDIA GPUs. Although the learning curve and programming requirements are still fairly low-level, Mojo can close significant gaps in the fragmented Python ecosystem in the convergence of scientific computing and AI.
Accepted at the IEEE/ACM SC25 Conference WACCPD Workshop. The International Conference for High Performance Computing, Networking, Storage, and Analysis, St. Louis, MO, Nov 16-21, 2025. 15 pages, 7 figures. WFG and TM contributed equally
Computational Engineering, Finance, and Science (cs.CE), FOS: Computer and information sciences, Emerging Technologies (cs.ET), Computational Engineering, Finance, and Science, Programming Languages, Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC), Emerging Technologies, Programming Languages (cs.PL)
Computational Engineering, Finance, and Science (cs.CE), FOS: Computer and information sciences, Emerging Technologies (cs.ET), Computational Engineering, Finance, and Science, Programming Languages, Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC), Emerging Technologies, Programming Languages (cs.PL)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
