Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1145/373159...
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mojo: MLIR-based Performance-Portable HPC Science Kernels on GPUs for the Python Ecosystem

Authors: William Godoy; Tatiana Melnichenko; Pedro Valero-Lara; Wael Elwasif; Philip Fackler; Rafael Ferreira Da Silva; Keita Teranishi; +1 Authors

Mojo: MLIR-based Performance-Portable HPC Science Kernels on GPUs for the Python Ecosystem

Abstract

We explore the performance and portability of the novel Mojo language for scientific computing workloads on GPUs. As the first language based on the LLVM's Multi-Level Intermediate Representation (MLIR) compiler infrastructure, Mojo aims to close performance and productivity gaps by combining Python's interoperability and CUDA-like syntax for compile-time portable GPU programming. We target four scientific workloads: a seven-point stencil (memory-bound), BabelStream (memory-bound), miniBUDE (compute-bound), and Hartree-Fock (compute-bound with atomic operations); and compare their performance against vendor baselines on NVIDIA H100 and AMD MI300A GPUs. We show that Mojo's performance is competitive with CUDA and HIP for memory-bound kernels, whereas gaps exist on AMD GPUs for atomic operations and for fast-math compute-bound kernels on both AMD and NVIDIA GPUs. Although the learning curve and programming requirements are still fairly low-level, Mojo can close significant gaps in the fragmented Python ecosystem in the convergence of scientific computing and AI.

Accepted at the IEEE/ACM SC25 Conference WACCPD Workshop. The International Conference for High Performance Computing, Networking, Storage, and Analysis, St. Louis, MO, Nov 16-21, 2025. 15 pages, 7 figures. WFG and TM contributed equally

Related Organizations
Keywords

Computational Engineering, Finance, and Science (cs.CE), FOS: Computer and information sciences, Emerging Technologies (cs.ET), Computational Engineering, Finance, and Science, Programming Languages, Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC), Emerging Technologies, Programming Languages (cs.PL)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green