Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hydrology Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hydrology Research
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hydrology Research
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Estimating groundwater recharge rates in the Upper Awash Basin, Ethiopia under different combinations of model complexity and objective functions

Authors: Muauz Amare Redda; Seifu Kebede; Behailu Birhanu; Bediru Hussien;

Estimating groundwater recharge rates in the Upper Awash Basin, Ethiopia under different combinations of model complexity and objective functions

Abstract

Abstract This study addresses the critical need for reliable groundwater recharge quantification by investigating the uncertainty associated with recharge estimation based on various combinations of model complexity and objective functions. Focusing on the Hombele catchment in the upper Awash Basin, Ethiopia, the research aims to analyze parameter sensitivity under different model complexities and objectives while estimating groundwater recharge for the period 1986–2013. Employing a Monte-Carlo-based calibration scheme, the study fine-tunes model parameters using objective functions like KGE, NSE, LogNSE, R2, and VE across 10 combinations of model complexity and objective functions. Results identify FC, LP, and BETA as highly sensitive parameters, while UZL, K0, and MAXBAS show limited influence in all model complexity and objective function scenarios. The semi-distributed HBV-light model achieves calibration, validation, and overall period KGE (NSE) values of 0.89 (0.80), 0.80 (0.73), and 0.87 (0.77), respectively. Sensitivity analyses reveal significant impacts on model parameters and recharge estimation based on the chosen objective function and model complexity levels. Average annual recharge rates range from 185.9–280.5 mm when the HBV-light model is semi-distributed, contrasting with 185.3–321.7 mm under lumped model conditions, emphasizing the importance of considering these factors in groundwater resource assessments.

Keywords

River, lake, and water-supply engineering (General), TC401-506, Physical geography, objective functions, groundwater recharge, hbv-light model, model complexity, GB3-5030

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
gold