
doi: 10.3934/mbe.2023705
pmid: 37919991
<abstract> <p>Minimum spanning tree (MST)-based clustering algorithms are widely used to detect clusters with diverse densities and irregular shapes. However, most algorithms require the entire dataset to construct an MST, which leads to significant computational overhead. To alleviate this issue, our proposed algorithm R-MST utilizes representative points instead of all sample points for constructing MST. Additionally, based on the density and nearest neighbor distance, we improved the representative point selection strategy to enhance the uniform distribution of representative points in sparse areas, enabling the algorithm to perform well on datasets with varying densities. Furthermore, traditional methods for eliminating inconsistent edges generally require prior knowledge about the number of clusters, which is not always readily available in practical applications. Therefore, we propose an adaptive method that employs mutual neighbors to identify inconsistent edges and determine the optimal number of clusters automatically. The experimental results indicate that the R-MST algorithm not only improves the efficiency of clustering but also enhances its accuracy.</p> </abstract>
density, mutual neighbors, inconsistent edges, QA1-939, minimum spanning tree, TP248.13-248.65, Mathematics, clustering, Biotechnology
density, mutual neighbors, inconsistent edges, QA1-939, minimum spanning tree, TP248.13-248.65, Mathematics, clustering, Biotechnology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
