Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.research...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Conference object
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Variant-based competitive parallel execution of sequential programs

Authors: Oliver Trachsel; Thomas R. Gross;

Variant-based competitive parallel execution of sequential programs

Abstract

Competitive parallel execution (CPE) is a simple yet attractive technique to improve the performance of sequential programs on multi-core and multi-processor systems. A sequential program is transformed into a CPE-enabled program by introducing multiple variants for parts of the program. The performance of different variants depends on runtime conditions, such as program input or the execution platform, and the execution time of a CPE-enabled program is the sum of the shortest variants. Variants compete at run-time under the control of a CPE-aware run-time system. The runtime system ensures that the behavior and outcome of a CPE-enabled program is not distinguishable from the one of its original sequential counterpart. We present and evaluate a run-time system that is implemented as a user-space library and that closely interacts with the operating system. The report discusses two strategies for the generation of variants and investigates the applicability of CPE for two usage scenarios: i) computation-driven CPE: a simple and straightforward parallelization of heuristic algorithms, and ii) compiler-driven CPE: generation of CPE-enabled programs as part of the compilation process using different optimization strategies. Using a state-of-the-art SAT solver as an illustrative example, we report for compiler-based CPE speedups of 4–6% for many data sets, with a maximum slowdown of 2%. Computation-driven CPE provides super-linear speedups for 5 out of 31 data sets (with a maximum speedup of 7.4) and at most a slow-down of 1% for two data sets.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Top 10%
Top 10%