Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025
Data sources: DOAJ
https://dx.doi.org/10.13016/m2...
Other literature type . 2025
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PNet-IDS: A Lightweight and Generalizable Convolutional Neural Network for Intrusion Detection in Internet of Things

Authors: Auwal Sani Iliyasu; Abdul Jabbar Siddiqui; Houbing Song; Fahad Jibrin Abdu;

PNet-IDS: A Lightweight and Generalizable Convolutional Neural Network for Intrusion Detection in Internet of Things

Abstract

Network Intrusion Detection Systems (NIDS) play a crucial role in IoT security. In recent years, deep learning-based intrusion detection systems have demonstrated excellent performance. However, the high computational and storage requirements make these impractical for most IoT devices. To address this pressing issue, we propose PNet-IDS, a novel lightweight convolutional neural network (CNN)-based method to reduce computational complexity and optimize on-device resource usage for real-time intrusion detection. The key contribution of the proposed method is the reduced number of floating point operations (FLOPs) and effective utilization of on-device computational resources at high accuracies and precision, making PNet-IDS lightweight and efficient for real-time next generation IoT intrusion detection. Moreover, PNet-IDS’ robustness against distribution shifts in network traffic is enhanced by through a knowledge distillation framework. Comprehensive experimental evaluations using the popular BoT-IoT and CIC-IDS2017 benchmark datasets prove the superiority of the proposed PNet-IDS over competitive related methods in terms of reduced parameters count, reduced FLOPs, reduced model size while maintaining high accuracy and precision. By combining PNet-IDS’ efficiency with knowledge distillation’s adaptability, the proposed method offers a scalable and resilient solution for IoT intrusion detection.

Keywords

lightweight models, convolutional neural network (CNN), knowledge distillation (KD), UMBC Security and Optimization for Networked Globe Laboratory (SONG Lab), convolutional neural network (CNN). internet of things (IoT), knowledge distilllation (KD), Adaptation models, Deep learning, Computational modeling, network intrusion detection system (NIDS), Convolution, Internet of Things (IoT), TK1-9971, Industrial Internet of Things, Telecommunication traffic, Security, Convolutional neural networks, Electrical engineering. Electronics. Nuclear engineering, Real-time systems, Accuracy

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold