
A novel nonlinear programming based control allocation scheme is developed. The performance of this nonlinear control allocation algorithm is compared with that of other control allocation approaches, including a mixed optimization scheme, a redistributed pseudo-inverse approach, and a direct allocation (geometric) method. The control allocation methods are first compared using open-loop measures such as the ability to attain commanded moments for a prescribed maneuver. The methods are then compared in closed-loop with a dynamic inversion-based control law. Next, the performance of the different algorithms is compared for different reference trajectories under a variety of failure conditions. Finally, we perform some preliminary studies employing "split actuators" that increase available control authority under failure conditions. All studies are conducted on a re-entry vehicle simulation.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
