Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1016/b978-0...
Part of book or chapter of book . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pure University of Manchester
Part of book or chapter of book . 2019
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simultaneous Synthesis and Design of Integrated Reaction-Separation Systems Using Rigorous Models

Authors: Ma, Yingjie; El-Khoruy, Aline; Yang, Zekun; Sun, Li; Zhang, Nan; Li, Jie; Xiao, Xin;

Simultaneous Synthesis and Design of Integrated Reaction-Separation Systems Using Rigorous Models

Abstract

Simultaneous synthesis and design of integrated reaction-separation processes using rigorous models is highly desirable to improve process performance. However, it often leads to a large-scale highly nonlinear nonconvex mixed-integer nonlinear programming model, which is difficult to solve. In this work, we propose a computationally-efficient optimization framework for simultaneous synthesis and design using rigorous models. The reactor and separation network are modelled using generalized disjunctive programming (GDP), which is reformulated into a mixed-integer nonlinear programming model using the convex-hull method. The activeness and inactiveness of a tray in a distillation column is modelled using the bypass efficiency method without introduction of integer variables, leading to significant reduction in the number of integer variables. To solve the model to local optimality, a systematic solution approach is proposed in which the pseudo-transient continuation model is used to generate a good starting point for optimization. The complementary conditions are added step by step to avoid infeasibility and ensure bypass efficiency variables be 0 or 1 only. An example from literature is solved to illustrate the capacity of the proposed optimization framework. The computational results demonstrate that the proposed optimization framework generates the local optimal solution of 2.13 M$/year within 58 CPU seconds. Significant reduction in computational efforts by 85% and improvement in solution quality by 5% are achieved compared to the existing approach.

Related Organizations
Keywords

Integrated reaction-separation system, disjunctive programming, process synthesis and design, rigorous models, mixed-integer nonlinear programming

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!