
arXiv: 2506.22593
handle: 11589/289040
Autonomous robots are increasingly playing key roles as support platforms for human operators in high-risk, dangerous applications. To accomplish challenging tasks, an efficient human-robot cooperation and understanding is required. While typically robotic planning leverages 3D geometric information, human operators are accustomed to a high-level compact representation of the environment, like top-down 2D maps representing the Building Information Model (BIM). 3D scene graphs have emerged as a powerful tool to bridge the gap between human readable 2D BIM and the robot 3D maps. In this work, we introduce Pixels-to-Graph (Pix2G), a novel lightweight method to generate structured scene graphs from image pixels and LiDAR maps in real-time for the autonomous exploration of unknown environments on resource-constrained robot platforms. To satisfy onboard compute constraints, the framework is designed to perform all operation on CPU only. The method output are a de-noised 2D top-down environment map and a structure-segmented 3D pointcloud which are seamlessly connected using a multi-layer graph abstracting information from object-level up to the building-level. The proposed method is quantitatively and qualitatively evaluated during real-world experiments performed using the NASA JPL NeBula-Spot legged robot to autonomously explore and map cluttered garage and urban office like environments in real-time.
Paper accepted to 2025 IEEE International Conference on Automation Science and Engineering (CASE)
FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Artificial Intelligence, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Robotics; Computer Science - Robotics; Computer Science - Artificial Intelligence; Computer Science - Computer Vision and Pattern Recognition, Robotics, Computer Vision and Pattern Recognition, Robotics (cs.RO)
FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Artificial Intelligence, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Robotics; Computer Science - Robotics; Computer Science - Artificial Intelligence; Computer Science - Computer Vision and Pattern Recognition, Robotics, Computer Vision and Pattern Recognition, Robotics (cs.RO)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
