
arXiv: 2410.07688
Data-driven methods have shown great potential in solving challenging manipulation tasks; however, their application in the domain of deformable objects has been constrained, in part, by the lack of data. To address this lack, we propose PokeFlex, a dataset featuring real-world multimodal data that is paired and annotated. The modalities include 3D textured meshes, point clouds, RGB images, and depth maps. Such data can be leveraged for several downstream tasks, such as online 3D mesh reconstruction, and it can potentially enable underexplored applications such as the real-world deployment of traditional control methods based on mesh simulations. To deal with the challenges posed by real-world 3D mesh reconstruction, we leverage a professional volumetric capture system that allows complete 360° reconstruction. PokeFlex consists of 18 deformable objects with varying stiffness and shapes. Deformations are generated by dropping objects onto a flat surface or by poking the objects with a robot arm. Interaction wrenches and contact locations are also reported for the latter case. Using different data modalities, we demonstrated a use case for our dataset training models that, given the novelty of the multimodal nature of Pokeflex, constitute the state-of-the-art in multi-object online template-based mesh reconstruction from multimodal data, to the best of our knowledge. We refer the reader to our website ( https://pokeflex-dataset.github.io/ ) for further demos and examples.
This work has been submitted to the IEEE for possible publication
FOS: Computer and information sciences, Computer Science - Robotics, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Robotics (cs.RO)
FOS: Computer and information sciences, Computer Science - Robotics, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Robotics (cs.RO)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
