
Pour offrir des techniques innovantes d'évolution des logiciels malveillants, il est intéressant d'intégrer des approches qui traitent des données et des connaissances imparfaites. En fait, les auteurs de logiciels malveillants ont tendance à cibler certaines fonctionnalités précises dans le code de l'application pour camoufler le contenu malveillant. Ces fonctionnalités peuvent parfois présenter des informations conflictuelles sur la vraie nature du contenu de l'application (malveillant/bénin). Dans cet article, nous montrons comment le modèle Variable Precision Rough Set (VPRS) peut être combiné avec des techniques d'optimisation, en particulier Bilevel-Optimization-Problems (BLOPs), afin d'établir un modèle de détection capable de suivre la course folle de l'évolution des logiciels malveillants initiée parmi les développeurs de logiciels malveillants. Nous proposons une nouvelle technique de détection de logiciels malveillants, basée sur une telle hybridation, nommée Variable Precision Rough set Malware Detection (ProRSDet), qui offre des règles de détection robustes capables de révéler la nouvelle nature d'une application donnée. ProRSDet obtient des résultats encourageants lorsqu'il est testé contre divers systèmes de détection de logiciels malveillants de pointe utilisant des métriques d'évaluation communes.
Para ofrecer técnicas innovadoras de evolución de malware, es atractivo integrar enfoques que manejen datos y conocimientos imperfectos. De hecho, los escritores de malware tienden a apuntar a algunas características precisas dentro del código de la aplicación para camuflar el contenido malicioso. Estas características a veces pueden presentar información conflictiva sobre la verdadera naturaleza del contenido de la aplicación (malicioso/benigno). En este documento, mostramos cómo el modelo de Conjunto aproximado de precisión variable (VPRS) se puede combinar con técnicas de optimización, en particular Problemas de optimización de nivel bilingüe (BLOP), para establecer un modelo de detección capaz de seguir la loca carrera de evolución de malware iniciada entre los desarrolladores de malware. En este documento, proponemos una nueva técnica de detección de malware, basada en dicha hibridación, llamada Detección de malware de conjunto aproximado de precisión variable (ProRSDet), que ofrece reglas de detección sólidas capaces de revelar la nueva naturaleza de una aplicación determinada. ProRSDet logra resultados alentadores cuando se prueba contra varios sistemas de detección de malware de última generación utilizando métricas de evaluación comunes.
To offer innovative malware evolution techniques, it is appealing to integrate approaches that handle imperfect data and knowledge.In fact, malware writers tend to target some precise features within the app's code to camouflage the malicious content.Those features may sometimes present conflictual information about the true nature of the content of the app (malicious/benign).In this paper, we show how the Variable Precision Rough Set (VPRS) model can be combined with optimization techniques, in particular Bilevel-Optimization-Problems (BLOPs), in order to establish a detection model capable of following the crazy race of malware evolution initiated among malware-developers.We propose a new malware detection technique, based on such hybridization, named Variable Precision Rough set Malware Detection (ProRSDet), that offers robust detection rules capable of revealing the new nature of a given app.ProRSDet attains encouraging results when tested against various state-of-the-art malware detection systems using common evaluation metrics.
لتقديم تقنيات تطوير البرامج الضارة المبتكرة، من الجذاب دمج الأساليب التي تتعامل مع البيانات والمعرفة غير الكاملة. في الواقع، يميل كتاب البرامج الضارة إلى استهداف بعض الميزات الدقيقة داخل رمز التطبيق لإخفاء المحتوى الضار. قد تقدم هذه الميزات أحيانًا معلومات متضاربة حول الطبيعة الحقيقية لمحتوى التطبيق (ضار/حميد). في هذه الورقة، نعرض كيف يمكن دمج نموذج مجموعة الدقة المتغيرة (VPRS) مع تقنيات التحسين، ولا سيما مشاكل تحسين المستوى المزدوج (BLOPs)، من أجل إنشاء نموذج كشف قادر على متابعة السباق المجنون لتطور البرامج الضارة الذي بدأ بين مطوري البرامج الضارة. نقترح تقنية جديدة للكشف عن البرامج الضارة، بناءً على هذا التهجين، تسمى مجموعة الدقة المتغيرة للكشف عن البرامج الضارة (ProRSDet)، والتي توفر قواعد كشف قوية قادرة على الكشف عن الطبيعة الجديدة للتطبيق المعطى. تحقق PRSD نتائج مشجعة عند اختبارها مقابل أنظمة الكشف عن البرامج الضارة المختلفة باستخدام مقاييس التقييم الشائعة.
Artificial intelligence, Outlier Detection, Computer Networks and Communications, Novelty Detection, Set (abstract data type), Information technology, [INFO] Computer Science [cs], Malware, Mathematical analysis, Anomaly Detection in High-Dimensional Data, Database, Characterization and Detection of Android Malware, Artificial Intelligence, Computer security, FOS: Mathematics, Variable (mathematics), Data mining, [INFO.INFO-CR] Computer Science [cs]/Cryptography and Security [cs.CR], QA75.5-76.95, T58.5-58.64, Computer science, Intrusion Detection, Programming language, Detection, Electronic computers. Computer science, Rough set, Signal Processing, Computer Science, Physical Sciences, Network Intrusion Detection and Defense Mechanisms, Botnet Detection, Mathematics, Data modeling
Artificial intelligence, Outlier Detection, Computer Networks and Communications, Novelty Detection, Set (abstract data type), Information technology, [INFO] Computer Science [cs], Malware, Mathematical analysis, Anomaly Detection in High-Dimensional Data, Database, Characterization and Detection of Android Malware, Artificial Intelligence, Computer security, FOS: Mathematics, Variable (mathematics), Data mining, [INFO.INFO-CR] Computer Science [cs]/Cryptography and Security [cs.CR], QA75.5-76.95, T58.5-58.64, Computer science, Intrusion Detection, Programming language, Detection, Electronic computers. Computer science, Rough set, Signal Processing, Computer Science, Physical Sciences, Network Intrusion Detection and Defense Mechanisms, Botnet Detection, Mathematics, Data modeling
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
