
pmid: 36896545
<abstract> <p>Though several AI-based models have been established for COVID-19 diagnosis, the machine-based diagnostic gap is still ongoing, making further efforts to combat this epidemic imperative. So, we tried to create a new feature selection (FS) method because of the persistent need for a reliable system to choose features and to develop a model to predict the COVID-19 virus from clinical texts. This study employs a newly developed methodology inspired by the flamingo's behavior to find a near-ideal feature subset for accurate diagnosis of COVID-19 patients. The best features are selected using a two-stage. In the first stage, we implemented a term weighting technique, which that is RTF-C-IEF, to quantify the significance of the features extracted. The second stage involves using a newly developed feature selection approach called the improved binary flamingo search algorithm (IBFSA), which chooses the most important and relevant features for COVID-19 patients. The proposed multi-strategy improvement process is at the heart of this study to improve the search algorithm. The primary objective is to broaden the algorithm's capabilities by increasing diversity and support exploring the algorithm search space. Additionally, a binary mechanism was used to improve the performance of traditional FSA to make it appropriate for binary FS issues. Two datasets, totaling 3053 and 1446 cases, were used to evaluate the suggested model based on the Support Vector Machine (SVM) and other classifiers. The results showed that IBFSA has the best performance compared to numerous previous swarm algorithms. It was noted, that the number of feature subsets that were chosen was also drastically reduced by 88% and obtained the best global optimal features.</p> </abstract>
Radiology, Nuclear Medicine and Imaging, Artificial intelligence, Support Vector Machine, Feature (linguistics), Health Professions, Infectious disease (medical specialty), Pattern recognition (psychology), feature selection, COVID-19 Testing, Selection (genetic algorithm), Health Information Management, Multi-label Text Classification in Machine Learning, Pathology, Disease, Feature Selection, 006, Applications of Deep Learning in Medical Imaging, FOS: Philosophy, ethics and religion, Algorithm, covid-19, Physical Sciences, Feature selection, Medicine, Algorithms, Biotechnology, QA75 Electronic computers. Computer science, Birds, Artificial Intelligence, Virology, Health Sciences, QA1-939, Animals, Humans, natural language processing, Machine Learning in Healthcare and Medicine, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), COVID-19, Outbreak, Linguistics, Computer science, Coronavirus disease 2019 (COVID-19), Philosophy, Computer Science, FOS: Languages and literature, clinical text classification, 2019-20 coronavirus outbreak, TP248.13-248.65, Mathematics, binary flamingo search algorithm
Radiology, Nuclear Medicine and Imaging, Artificial intelligence, Support Vector Machine, Feature (linguistics), Health Professions, Infectious disease (medical specialty), Pattern recognition (psychology), feature selection, COVID-19 Testing, Selection (genetic algorithm), Health Information Management, Multi-label Text Classification in Machine Learning, Pathology, Disease, Feature Selection, 006, Applications of Deep Learning in Medical Imaging, FOS: Philosophy, ethics and religion, Algorithm, covid-19, Physical Sciences, Feature selection, Medicine, Algorithms, Biotechnology, QA75 Electronic computers. Computer science, Birds, Artificial Intelligence, Virology, Health Sciences, QA1-939, Animals, Humans, natural language processing, Machine Learning in Healthcare and Medicine, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), COVID-19, Outbreak, Linguistics, Computer science, Coronavirus disease 2019 (COVID-19), Philosophy, Computer Science, FOS: Languages and literature, clinical text classification, 2019-20 coronavirus outbreak, TP248.13-248.65, Mathematics, binary flamingo search algorithm
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
