Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Academica-earrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Transactions on Neural Systems and Rehabilitation Engineering
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

Understanding EMG PDF Changes With Motor Unit Potential Amplitudes, Firing Rates, and Noise Level Through EMG Filling Curve Analysis

Authors: Javier Navallas; Cristina Mariscal; Armando Malanda; Javier Rodríguez-Falces;

Understanding EMG PDF Changes With Motor Unit Potential Amplitudes, Firing Rates, and Noise Level Through EMG Filling Curve Analysis

Abstract

EMG filling curve characterizes the EMG filling process and EMG probability density function (PDF) shape change for the entire force range of a muscle. We aim to understand the relation between the physiological and recording variables, and the resulting EMG filling curves. We thereby present an analytical and simulation study to explain how the filling curve patterns relate to specific changes in the motor unit potential (MUP) waveforms and motor unit (MU) firing rates, the two main factors affecting the EMG PDF, but also to recording conditions in terms of noise level. We compare the analytical results with simulated cases verifying a perfect agreement with the analytical model. Finally, we present a set of real EMG filling curves with distinct patterns to explain the information about MUP amplitudes, MU firing rates, and noise level that these patterns provide in the light of the analytical study. Our findings reflect that the filling factor increases when firing rate increases or when newly recruited motor unit have potentials of smaller or equal amplitude than the former ones. On the other hand, the filling factor decreases when newly recruited potentials are larger in amplitude than the previous potentials. Filling curves are shown to be consistent under changes of the MUP waveform, and stretched under MUP amplitude scaling. Our findings also show how additive noise affects the filling curve and can even impede to obtain reliable information from the EMG PDF statistics.

Country
Spain
Keywords

Motor Neurons, Recruitment, Neurophysiological, Models, Statistical, Filling factor, Electromyography, Action Potentials, Reproducibility of Results, RM1-950, Interference pattern, EMG filling, Signal-To-Noise Ratio, filling factor, EMG PDF, interference pattern, Medical technology, Humans, Computer Simulation, Therapeutics. Pharmacology, R855-855.5, Electromyography (EMG), Muscle, Skeletal, Algorithms, Muscle Contraction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold
Related to Research communities