Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UPCommons. Portal de...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Recolector de Ciencia Abierta, RECOLECTA
Article . 2024 . Peer-reviewed
License: CC BY NC ND
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
SIAM Journal on Scientific Computing
Article . 2024 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY NC ND
Data sources: Datacite
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Multigrid Reduction Framework for Domains with Symmetries

A multigrid reduction framework for domains with symmetries
Authors: Alsalti Baldellou, Àdel; Janna, Carlo; Álvarez Farré, Xavier; Trias Miquel, Francesc Xavier;

A Multigrid Reduction Framework for Domains with Symmetries

Abstract

Divergence constraints are present in the governing equations of numerous physical phenomena, and they usually lead to a Poisson equation whose solution represents a bottleneck in many simulation codes. Algebraic Multigrid (AMG) is arguably the most powerful preconditioner for Poisson's equation, and its effectiveness results from the complementary roles played by the smoother, responsible for damping high-frequency error components, and the coarse-grid correction, which in turn reduces low-frequency modes. This work presents several strategies to make AMG more compute-intensive by leveraging reflection, translational and rotational symmetries. AMGR, our final proposal, does not require boundary conditions to be symmetric, therefore applying to a broad range of academic and industrial configurations. It is based on a multigrid reduction framework that introduces an aggressive coarsening to the multigrid hierarchy, reducing the memory footprint, setup and application costs of the top-level smoother. While preserving AMG's excellent convergence, AMGR allows replacing the standard sparse matrix-vector product with the more compute-intensive sparse matrix-matrix product, yielding significant accelerations. Numerical experiments on industrial CFD applications demonstrated up to 70% speed-ups when solving Poisson's equation with AMGR instead of AMG. Additionally, strong and weak scalability analyses revealed no significant degradation.

Keywords

Àrees temàtiques de la UPC::Enginyeria mecànica::Mecànica de fluids, FOS: Computer and information sciences, Àrees temàtiques de la UPC::Física::Termodinàmica, Multigrid methods; domain decomposition for boundary value problems involving PDEs, Spatial symmetries, spatial symmetries, Navier-Stokes equations for incompressible viscous fluids, Parallel numerical computation, Numerical Analysis (math.NA), Computational methods for sparse matrices, Poisson's equation, Computer Science - Distributed, Parallel, and Cluster Computing, AMG, multigrid reduction, FOS: Mathematics, Multigrid reduction, Preconditioners for iterative methods, AMG; multigrid reduction; SpMM; spatial symmetries; Poisson's equation, Poisson’s equation, Mathematics - Numerical Analysis, Distributed, Parallel, and Cluster Computing (cs.DC), 65F08, 65F50, 65N55, 65Y05, SpMM

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities