
In this golden age of multimedia, realistic content is in high demand with users seeking more immersive and interactive experiences. As a result, new image modalities for 3D representations have emerged in recent years, among which point clouds have deserved especial attention. Naturally, with this increase in demand, efficient storage and transmission became a must, with standardization groups such as MPEG and JPEG entering the scene, as it happened before with other types of visual media. In a surprising development, JPEG issued a Call for Proposals on point cloud coding targeting exclusively learningbased solutions, in parallel to a similar call for image coding. This is a natural consequence of the growing popularity of deep learning, which due to its excellent performances is currently dominant in the multimedia processing field, including coding. This paper presents the coding solution selected by JPEG as the best-performing response to the Call for Proposals and adopted as the first version of the JPEG Pleno Point Cloud Coding Verification Model, in practice the first step for developing a standard. The proposed solution offers a novel joint geometry and color approach for point cloud coding, in which a single deep learning model processes both geometry and color simultaneously. To maximize the RD performance for a large range of point clouds, the proposed solution uses down-sampling and learningbased super-resolution as pre- and post-processing steps. Compared to the MPEG point cloud coding standards, the proposed coding solution comfortably outperforms G-PCC, for both geometry, color, and joint quality metrics.
Geometry and color, JPEG Pleno standard, Point cloud coding, Deep learning, Point cloud super-resolution
Geometry and color, JPEG Pleno standard, Point cloud coding, Deep learning, Point cloud super-resolution
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
