Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UPCommons. Portal de...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Knee Surgery Sports Traumatology Arthroscopy
Article . 2022 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lateral extraarticular tenodesis improves stability in non‐anatomic ACL reconstructed knees: in vivo kinematic analysis

Authors: Perelli, Simone; Morales-Avalos, Rodolfo; Formagnana, Mario; Rojas-Castillo, Gonzalo; Serrancolí, Gil; Monllau, Joan Carles;

Lateral extraarticular tenodesis improves stability in non‐anatomic ACL reconstructed knees: in vivo kinematic analysis

Abstract

AbstractPurposeTo carry out an in vivo kinematic analysis to determine whether adding a lateral extraarticular tenodesis (LET) for those patients with subjective instability and objective residual laxity after a transtibial (TT) anterior cruciate ligament reconstruction (ACLR) reduces anteroposterior and rotational laxity and to evaluate the 2‐year follow‐up clinical outcomes to analyze whether biomechanical changes determine clinical improvement or not.MethodsA total of 19 patients with residual knee instability after TT ACLR who underwent a modified Lemaire LET were prospectively evaluated for at least 2‐year follow‐up. Preoperative, intraoperative, and 6 and 24‐month postoperative kinematic analyses were carried out using the KiRA accelerometer and KT1000 arthrometer to look for residual anterolateral rotational instability and residual anteroposterior instability. Functional outcomes were measured with the single‐leg vertical jump test and the single‐leg hop test. Clinical outcomes were evaluated using the IKDC 2000, Lysholm, and Tegner scores.ResultsA significant reduction in anterolateral rotational instability was detected with the patient under anesthesia (from 3 ± 1.2 to 1.1 ± 1.1 m/s2; p < 0.05) as well as with the patient awake (from 2.1 ± 0.8 to 0.7 ± 1.4 m/s2; p < 0.05). A significant reduction in anteroposterior instability was only present under anesthesia (from 3.4 ± 1.9 to 2.1 ± 1.1 mm; p < 0.05), while no difference was present without anesthesia (from 2.3 ± 1.1 to 1.6 ± 1 mm; n.s.). Postoperative analysis of knee laxity did not show any significant variation from the first to the last follow‐up. Both the single‐leg vertical jump test and single‐leg hop test improved significantly at the last follow‐up (both p < 0.05). The mean values of both the IKDC and Tegner scores showed an improvement (p < 0.05 and p < 0.05, respectively), whereas that was not the case with the Lysholm score (n.s.).ConclusionsThe modified Lemaire LET can improve the kinematics of a non‐anatomic ACL reconstructed knee with residual subjective and objective instability. These kinematic changes were able to lead to an improvement in subjective stability as well as the function of the knee in a small cohort of recreationally active patients. At 2‐year follow‐up, the kinematic changes as well as the level of activity of the patients and the IKDC score show their improvement sustained.Level of evidenceLevel IV.

Country
Spain
Keywords

Joint Instability, Kinematics, Anterior Cruciate Ligament Reconstruction, Knee Joint, Anterior Cruciate Ligament Injuries, Tenodesis, Cinemàtica, Biomechanical Phenomena, Humans, :Enginyeria biomèdica::Biomecànica [Àrees temàtiques de la UPC], Àrees temàtiques de la UPC::Enginyeria biomèdica::Biomecànica

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 28
    download downloads 174
  • 28
    views
    174
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
8
Top 10%
Average
Top 10%
28
174
Green