Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multiobjective patch antenna design by using achievement scalarization function with nonlinear programming algorithm

Authors: O. Tolga Altinoz; A. Egemen Yilmaz;

Multiobjective patch antenna design by using achievement scalarization function with nonlinear programming algorithm

Abstract

Achievement scalarization function is one of the method for converting the multiobjective problem into a single objective one. The differences of this methodology among the similar scalarization approaches are its performance and utilization of the reference point set on objective space which is preferred on modern (especially many objective problems) optimization algorithms. Since it is possible to use various optimization algorithms with this scalarization method, in this study a classical (also well-known and relatively complicated) optimization algorithm as a part of nonlinear programming called sequential quadratic programming is preferred. The analysis initially is started by applying this method into two benchmark problems to show the performance of this scalarization function on convex and concave problems and then the idea is applied to optimize the patch antenna problem as a multiobjective real-world optimization problem. The results show that not only the satisfactory performance obtained from classical optimization algorithm but also the method allows the researchers to select different levels of the substrate thickness of the patch antenna which is a critical issue for joining the simulation results into implementation phase.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!