
This study proposes a new trust-region based sequential linear programming algorithm to solve the AC optimal power flow (OPF) problem. The OPF problem is solved by linearizing the cost function, power balance and engineering constraints of the system, followed by a trust-region to control the validity of the linear model. To alleviate the problems associated with the infeasibilities of a linear approximation, a feasibility restoration phase is introduced. This phase uses the original nonlinear constraints to quickly locate a feasible point when the linear approximation is infeasible. The algorithm follows convergence criteria to satisfy the first order optimality conditions for the original OPF problem. Studies on standard IEEE systems and large-scale Polish systems show an acceptable quality of convergence to a set of best-known solutions and a substantial improvement in computational time, with linear scaling proportional to the network size.
Optimal Power Flow, Nonlinear Programming, :Electrical and electronic engineering [Engineering], 4008 Electrical Engineering, 40 Engineering
Optimal Power Flow, Nonlinear Programming, :Electrical and electronic engineering [Engineering], 4008 Electrical Engineering, 40 Engineering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
