
AbstractBackgroundStep count is an intuitive measure of physical activity frequently quantified in a range of health-related studies; however, accurate quantification of step count can be difficult in the free-living environment, with step counting error routinely above 20% in both consumer and research-grade wrist-worn devices. This study aims to describe the development and validation of step count derived from a wrist-worn accelerometer and to assess its association with cardiovascular and all-cause mortality in a large prospective cohort study.MethodsWe developed and externally validated a hybrid step detection model that involves self-supervised machine learning, trained on a new ground truth annotated, free-living step count dataset (OxWalk, n=39, aged 19-81) and tested against other open-source step counting algorithms. This model was applied to ascertain daily step counts from raw wrist-worn accelerometer data of 75,493 UK Biobank participants without a prior history of cardiovascular disease (CVD) or cancer. Cox regression was used to obtain hazard ratios and 95% confidence intervals for the association of daily step count with fatal CVD and all-cause mortality after adjustment for potential confounders.FindingsThe novel step algorithm demonstrated a mean absolute percent error of 12.5% in free-living validation, detecting 98.7% of true steps and substantially outperforming other recent wrist-worn, open-source algorithms. Our data are indicative of an inverse dose-response association, where, for example, taking 6,596 to 8,474 steps per day was associated with a 39% [24-52%] and 27% [16-36%] lower risk of fatal CVD and all-cause mortality, respectively, compared to those taking fewer steps each day.InterpretationAn accurate measure of step count was ascertained using a machine learning pipeline that demonstrates state-of-the-art accuracy in internal and external validation. The expected associations with CVD and all-cause mortality indicate excellent face validity. This algorithm can be used widely for other studies that have utilised wrist-worn accelerometers and an open-source pipeline is provided to facilitate implementation.Funding AcknowledgementsThis research has been conducted using the UK Biobank Resource under Application Number 59070. This research was funded in whole or in part by the Wellcome Trust [223100/Z/21/Z]. For the purpose of open access, the author has applied a CC-BY public copyright licence to any author accepted manuscript version arising from this submission. AD and SS are supported by the Wellcome Trust. AD and DM are supported by Swiss Re, while AS is an employee of Swiss Re. AD, SC, RW, SS, and SK are supported by HDR UK, an initiative funded by UK Research and Innovation, Department of Health and Social Care (England) and the devolved administrations. AD, DB, GM, and SC are supported by NovoNordisk. AD is supported by the BHF Centre of Research Excellence (grant number RE/18/3/34214). SS is supported by the University of Oxford Clarendon Fund. DB is further supported by the Medical Research Council (MRC) Population Health Research Unit. DC holds a personal academic fellowship from EPSRC. AA, AC and DC are supported by GlaxoSmithKline. SK is supported by Amgen and UCB BioPharma outside of the scope of this work. Computational aspects of this research were funded from the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC) with additional support from Health Data Research (HDR) UK and the Wellcome Trust Core Award [grant number 203141/Z/16/Z]. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.
Article
Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
