Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Вавиловский журнал г...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of mutations in CDC27, CTBP2, HYDIN and KMT5A genes in carotid paragangliomas

Authors: E. N. Lukyanova; A. V. Snezhkina; D. V. Kalinin; A. V. Pokrovsky; A. L. Golovyuk; O. A. Stepanov; E. A. Pudova; +6 Authors

Analysis of mutations in CDC27, CTBP2, HYDIN and KMT5A genes in carotid paragangliomas

Abstract

Carotid paragangliomas (CPGLs) are rare neuroendocrine tumors that arise from paraganglionic tissue of the carotid body localizing at the bifurcation of carotid artery. These tumors are slowly growing, but occasionally they become aggressive and metastatic. Surgical treatment remains high-risk and extremely challenging; radiation and chemotherapy are poorly effective. The study of molecular pathogenesis of CPGLs will allow developing novel therapeutic approaches and revealing biomarkers. Previously, we performed the exome sequencing of 52 CPGLs and estimated mutational load (ML). Paired histologically normal tissues or blood were unavailable, so potentially germline mutations were excluded from the analysis with strong filtering conditions using 1000 Genomes Project and ExAC databases. In this work, ten genes (ZNF717, CDC27, FRG2C, FAM104B, CTBP2, HLA-DRB1, HYDIN, KMT5A, MUC3A, and PRSS3) characterized by the highest level of mutational load were analyzed. Using several prediction algorithms (SIFT, PolyPhen-2, MutationTaster, and LRT), potentially pathogenic mutations were identified in four genes (CDC27, CTBP2, HYDIN, and KMT5A). Many of these mutations occurred in the majority of cases, and their mutation type was checked using exome sequencing data of blood prepared with the same exome enrichment kit that was used for preparation of exome libraries from CPGLs. The majority of the mutations were germline that can apparently be associated with annotation errors in 1000 Genomes Pro ject and ExAC. However, part of the mutations identified in CDC27, CTBP2, HYDIN, and KMT5A remain potentially pathogenic, and there is a large body of data on the involvement of these genes in the formation and progression of other tumors. This allows considering CDC27, CTBP2, HYDIN, and KMT5A genes as potentially associated with CPGL pathogenesis and requires taking them into account in further investigations. Thus, there is a necessity to improve the methods for identification of cancer-asso ciated genes as well as pathogenic mutations. 

Related Organizations
Keywords

Genetics, high-throughput sequencing, QH426-470, mutations, carotid paragangliomas, mutation load, exome

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Cancer Research