Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Automationarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Automation
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Automation
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Solving a Stochastic Multi-Objective Sequence Dependence Disassembly Sequence Planning Problem with an Innovative Bees Algorithm

Authors: Xinyue Huang; Xuesong Zhang; Yanlong Gao; Changshu Zhan;

Solving a Stochastic Multi-Objective Sequence Dependence Disassembly Sequence Planning Problem with an Innovative Bees Algorithm

Abstract

As the number of end-of-life products multiplies, the issue of their efficient disassembly has become a critical problem that urgently needs addressing. The field of disassembly sequence planning has consequently attracted considerable attention. In the actual disassembly process, the complex structures of end-of-life products can lead to significant delays due to the interference between different tasks. Overlooking this can result in inefficiencies and a waste of resources. Therefore, it is particularly important to study the sequence-dependent disassembly sequence planning problem. Additionally, disassembly activities are inherently fraught with uncertainties, and neglecting these can further impact the effectiveness of disassembly. This study is the first to analyze the sequence-dependent disassembly sequence planning problem in an uncertain environment. It utilizes a stochastic programming approach to address these uncertainties. Furthermore, a mixed-integer optimization model is constructed to minimize the disassembly time and energy consumption simultaneously. Recognizing the complexity of the problem, this study introduces an innovative bees algorithm, which has proven its effectiveness by showing a superior performance compared to other state-of-the-art algorithms in various test cases. This research offers innovative solutions for the efficient disassembly of end-of-life products and holds significant implications for advancing sustainable development and the recycling of resources.

Related Organizations
Keywords

stochastic programming, bees algorithm, T1-995, uncertain, sequence-dependent disassembly sequence planning, Technology (General)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
gold