Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Image Processing
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hierarchical Predictive Coding-Based JND Estimation for Image Compression

Authors: Hongkui Wang; Li Yu; Junhui Liang; Haibing Yin; Tiansong Li; Shengwei Wang;

Hierarchical Predictive Coding-Based JND Estimation for Image Compression

Abstract

The human visual system (HVS) is a hierarchical system, in which visual signals are processed hierarchically. In this paper, the HVS is modeled as a three-level communication system and visual perception is divided into three stages according to the hierarchical predictive coding theory. Then, a novel just noticeable distortion (JND) estimation scheme is proposed. In visual perception, the input signals are predicted constantly and spontaneously in each hierarchy, and neural response is evoked by the central residue and inhibited by surrounding residues. These two types' residues are regarded as the positive and negative visual incentives which cause positive and negative perception effects, respectively. In neuroscience, the effect of incentive on observer is measured by the surprise of this incentive. Thus, we propose a surprise-based measurement method to measure both perception effects. Specifically, considering the biased competition of visual attention, we define the product of the residue self-information (i.e., surprise) and the competition biases as the perceptual surprise to measure the positive perception effect. As for the negative perception effect, it is measured by the average surprise (i.e., the local Shannon entropy). The JND threshold of each stage is estimated individually by considering both perception effects. The total JND threshold is finally obtained by non-linear superposition of three stage thresholds. Furthermore, the proposed JND estimation scheme is incorporated into the codec of Versatile Video Coding for image compression. Experimental results show that the proposed JND model outperforms the relevant existing ones, and over 16% of bit rate can be reduced without jeopardizing the perceptual quality.

Related Organizations
Keywords

Deep Learning, Sensory Thresholds, Models, Neurological, Image Processing, Computer-Assisted, Visual Perception, Humans, Data Compression, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!