
arXiv: 2203.13522
We propose a series of quantum algorithms for computing a wide range of quantum entropies and distances, including the von Neumann entropy, quantum Rényi entropy, trace distance, and fidelity. The proposed algorithms significantly outperform the prior best (and even quantum) ones in the low-rank case, some of which achieve exponential speedups. In particular, for $N$-dimensional quantum states of rank $r$, our proposed quantum algorithms for computing the von Neumann entropy, trace distance and fidelity within additive error $\varepsilon$ have time complexity of $\tilde O(r/\varepsilon^2)$, $\tilde O(r^5/\varepsilon^6)$ and $\tilde O(r^{6.5}/\varepsilon^{7.5})$, respectively. By contrast, prior quantum algorithms for the von Neumann entropy and trace distance usually have time complexity $Ω(N)$, and the prior best one for fidelity has time complexity $\tilde O(r^{12.5}/\varepsilon^{13.5})$. The key idea of our quantum algorithms is to extend block-encoding from unitary operators in previous work to quantum states (i.e., density operators). It is realized by developing several convenient techniques to manipulate quantum states and extract information from them. The advantage of our techniques over the existing methods is that no restrictions on density operators are required; in sharp contrast, the previous methods usually require a lower bound on the minimal non-zero eigenvalue of density operators.
Final version. 58 pages, 5 tables, 1 figure. Minor corrections to Theorem 3.1, Theorem 3.4, and Corollary 3.5
FOS: Computer and information sciences, Quantum Physics, Computer Science - Computational Complexity, FOS: Physical sciences, Computational Complexity (cs.CC), Quantum Physics (quant-ph)
FOS: Computer and information sciences, Quantum Physics, Computer Science - Computational Complexity, FOS: Physical sciences, Computational Complexity (cs.CC), Quantum Physics (quant-ph)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
