Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Detecting Malicious Javascript in PDF through Document Instrumentation

Authors: Daiping Liu; Haining Wang; Angelos Stavrou;

Detecting Malicious Javascript in PDF through Document Instrumentation

Abstract

An emerging threat vector, embedded malware inside popular document formats, has become rampant since 2008. Owed to its wide-spread use and Javascript support, PDF has been the primary vehicle for delivering embedded exploits. Unfortunately, existing defenses are limited in effectiveness, vulnerable to evasion, or computationally expensive to be employed as an on-line protection system. In this paper, we propose a context-aware approach for detection and confinement of malicious Javascript in PDF. Our approach statically extracts a set of static features and inserts context monitoring code into a document. When an instrumented document is opened, the context monitoring code inside will cooperate with our runtime monitor to detect potential infection attempts in the context of Javascript execution. Thus, our detector can identify malicious documents by using both static and runtime features. To validate the effectiveness of our approach in a real world setting, we first conduct a security analysis, showing that our system is able to remain effective in detection and be robust against evasion attempts even in the presence of sophisticated adversaries. We implement a prototype of the proposed system, and perform extensive experiments using 18623 benign PDF samples and 7370 malicious samples. Our evaluation results demonstrate that our approach can accurately detect and confine malicious Javascript in PDF with minor performance overhead.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!