Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2019 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Derivation of engineering formulas in order to calculate energy-power parameters and a shape change in a semi-finished product in the process of combined extrusion

Authors: Natalia Hrudkina; Leila Aliieva; Payman Abhari; Mykola Kuznetsov; Serhii Shevtsov;

Derivation of engineering formulas in order to calculate energy-power parameters and a shape change in a semi-finished product in the process of combined extrusion

Abstract

The possibilities of using and embedding kinematic trapezoid modules with curvilinear boundaries of different shapes were explored. Based on the energy method, the generalized formulas for calculating the power of deformation forces inside the axial trapezoidal kinematic module were derived. Different types of selecting the functions that describe a curvilinear boundary of the axial trapezoidal module were identified. We have analyzed the possibilities of using known techniques for the linearization of integrand dependences in order to calculate the power of deformation forces when it is impossible to obtain a given magnitude in the form of an analytical function. The ways to derive engineering formulas for the computation of components of reduced pressure inside an axial trapezoidal kinematic module were proposed. Based on the energy method, we obtained formulas for the calculation of a step-by-step change in the shape of a semi-finished product under assumption within the axial trapezoidal kinematic module. We modeled the process of combined extrusion of hollow parts with a flange and established regularities in shape formation depending on geometrical parameters. The data about a step-by-step change in the shape of a semi-finished product during deformation were obtained. A comparative analysis of calculation schemes for the rectilinear trapezoidal kinematic module and with a curvilinear boundary under assumption within the studied module was performed. It was confirmed that the reported ways for obtaining engineering formulas, as well as the algorithm for the calculation of processes of combined extrusion that is based on them, simplify the development of technological recommendations. This applies both to determining the force mode of extrusion and preliminary assessment of a change in the shape of a semi-finished product with the possibility to control a metal outflow in the process of deformation

Keywords

combined extrusion; kinematic module; energy method; linearization of functions; process of deformation., UDC 621.774, комбіноване видавлювання; кінематичний модуль; енергетичний метод; лінеаризація функцій; процес деформування, комбинированное выдавливание; кинематический модуль; энергетический метод; линеаризация функций; процесс деформирования

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 8
  • 3
    views
    8
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
2
Average
Average
Average
3
8
gold