Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Wide-Field 3D Ultrasound Imaging Platform With a Semi-Automatic 3D Segmentation Algorithm for Quantitative Analysis of Rotator Cuff Tears

Authors: Moon Hwan Lee; Jun-Young Kim; Kyungsu Lee; Chang-Hyuk Choi; Jae Youn Hwang;

Wide-Field 3D Ultrasound Imaging Platform With a Semi-Automatic 3D Segmentation Algorithm for Quantitative Analysis of Rotator Cuff Tears

Abstract

Rotator cuff tear (RCT) is a common injury that causes pain and disability in adults. The quantitative diagnosis of the RCT can be crucial in determining a treatment plan or monitoring treatment efficacy. Currently, only a few diagnosis tools, such as magnetic resonance imaging (MRI) and ultrasound imaging (US), are utilized for the diagnosis. Specifically, US exhibited comparable performance with MRI while offering a readily available diagnosis of RCTs at a lower cost. However, three-dimensional(3D) US and analysis of the regions are necessary to enable a better diagnosis of RCTs. Therefore, we developed a wide-field 3D US platform with a semi-automatic 3D image segmentation algorithm for 3D quantitative diagnosis of RCTs. The 3D US platform is built based on a conventional 2D US system and obtains 3D US images via linear scanning. With respect to 3D segmentation algorithm based on active contour model, frequency compounding and anisotropic diffusion methods were applied, and their effects on segmentation were discussed. The platform was used for clinical examination after evaluating the platform via the RCT-mimicking phantoms. As verified by the Dice coefficient(average DC: 0.663, volume DC: 0.723), which was approximately up to 50% higher than that obtained with conventional algorithms, the RCT regions segmented by the developed algorithm significantly matched the ground truth. The results indicated that the wide-field 3D US platform with the 3D segmentation algorithm can constitute a useful tool for improving the accuracy in the diagnosis of RCTs, and can eventually lead to better determination of treatment plans and surgical planning.

Keywords

Image segmentation, rotator cuff tear, active contour, Ultrasonic imaging, 3D ultrasound, Active contours, 610, CAROTID PLAQUE VOLUME, QUANTIFICATION, TK1-9971, Magnetic resonance imaging, BREAST-TUMOR, ULTRASONOGRAPHY, 3D image segmentation, Three-dimensional displays, Probes, DIAGNOSTIC-ACCURACY, MR ARTHROGRAPHY, SHOULDER, Electrical engineering. Electronics. Nuclear engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
gold