Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Engineering Computat...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Engineering Computations
Article . 2020 . Peer-reviewed
License: Emerald Insight Site Policies
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of semi-implicit midpoint and Romberg stress integration algorithms for single hardening soil constitutive models

Authors: Divyanshu Kumar Lal; Arghya Das;

Development of semi-implicit midpoint and Romberg stress integration algorithms for single hardening soil constitutive models

Abstract

Purpose Semi-implicit type cutting plane method (CPM) and fully implicit type closest point projection method (CPPM) are the two most widely used frameworks for numerical stress integration. CPM is simple, easy to implement and accurate up to first order. CPPM is unconditionally stable and accurate up to second order though the formulation is complex. Therefore, this study aims to develop a less complex and accurate stress integration method for complex constitutive models. Design/methodology/approach Two integration techniques are formulated using the midpoint and Romberg method by modifying CPM. The algorithms are implemented for three different classes of soil constitutive model. The efficiency of the algorithms is judged via stress point analysis and solving a boundary value problem. Findings Stress point analysis indicates that the proposed algorithms are stable even with a large step size. In addition, numerical analysis for solving boundary value problem demonstrates a significant reduction in central processing unit (CPU) time with the use of the semi-implicit-type midpoint algorithm. Originality/value Traditionally, midpoint and Romberg algorithms are formulated from explicit integration techniques, whereas the present study uses a semi-implicit approach to enhance stability. In addition, the proposed stress integration algorithms provide an efficient means to solve boundary value problems pertaining to geotechnical engineering.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!