
A novel VLSI architecture for kernel fuzzy c-means algorithm is presented in this paper. The architecture consists of efficient circuits for the computation of kernel functions, membership coefficients and cluster centers. In addition, the usual iterative operations for updating the membership matrix and cluster centers are merged into one single updating process to evade the large storage requirement. The circuit is used as a hardware accelerator of a softcore processor in a system-on-programmable chip for physical performance measurement. Experimental results show that the proposed solution is an effective alternative for cluster analysis with low computational cost and high performance.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
