Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Engineeri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Engineering Science (Chişinău)
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ADVANCED DRONE-BASED MONITORING OF AGRICULTURAL, FORESTRY, AND AQUATIC ECOSYSTEMS: TECHNICAL FRAMEWORK

Authors: Maria Gutu; Lilia Rotaru; Victoria Alexei; Maxim Kapusteanski;

ADVANCED DRONE-BASED MONITORING OF AGRICULTURAL, FORESTRY, AND AQUATIC ECOSYSTEMS: TECHNICAL FRAMEWORK

Abstract

The rapid advancement of drone technology has significantly transformed environmental monitoring, enhancing capabilities for observing and managing agricultural, forestry, and aquatic ecosystems. This paper presents a comprehensive technical framework for implementing advanced drone-based systems into ecosystem monitoring, focusing on integrating high-resolution sensors, data processing, and artificial intelligence-based analytics. The framework incorporates modern technologies, including drones from Da-Jiang Innovations or First-Person View drones equipped with metric cameras for aerial photogrammetry. These can be further enhanced with multispectral and Light Detection and Ranging sensors to acquire real-time data, enabling more effective analysis. Furthermore, the Proxmox Virtual Environment is the core of the system’s architecture, increasing effective virtualisation and deployment. Core data processing technologies include Python scripts, Quantum Geographic Information System, and Pix4D software for photogrammetric reconstruction, as well as Elasticsearch for database management, acquisition, and storage. The Kibana platform ensures interactive data visualisation and supports evidence-based decision-making. The service-oriented structure and system modularity enable the rapid integration of new analytical tools that are adaptable to diverse ecological contexts. Validation in operational environments confirms the framework’s ability to address challenges in ecosystem management, particularly in remote areas. This integrated approach contributes to more sustainable and adaptive ecosystem monitoring and management practices.

Related Organizations
Keywords

Drone-based acquisition, AI-driven analytics, Drone-based monitoring system, Ecosystem management

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold