Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Advanced ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-Focus Image Fusion Using Energy Valley Optimization Algorithm

Authors: Harun Akbulut;

Multi-Focus Image Fusion Using Energy Valley Optimization Algorithm

Abstract

When a natural scene is photographed using imaging sensors commonly used today, part of the image is obtained sharply while the other part is obtained blurry. This problem is called limited depth of field. This problem can be solved by fusing the sharper parts of multi-focus images of the same scene. These methods are called multi-focus image fusion methods. This study proposes a block-based multi-focus image fusion method using the Energy Valley Optimization Algorithm (EVOA), which has been introduced in recent years. In the proposed method, the source images are first divided into uniform blocks, and then the sharper blocks are determined using the criterion function. By fusing these blocks, a fused image is obtained. EVOA is used to optimize the block size. The function that maximizes the quality of the fused image is used as the fitness function of the EVOA. The proposed method has been applied to commonly used image sets. The obtained experimental results are compared with the well-known Genetic Algorithm (GA), Differential Evolution Algorithm (DE), and Artificial Bee Colony Optimization Algorithm (ABC). The experimental results show that EVOA can compete with the other block-based multi-focus image fusion algorithms.

Keywords

Evrimsel Hesaplama, Görüntü İşleme, multi-focus image fusion, Image Processing, Multi-focus image fusion;energy valley optimizer;block-based image fusion;comparison of meta-heuristic algorithm, comparison of meta-heuristic algorithm, energy valley optimizer, TA1-2040, Evolutionary Computation, Engineering (General). Civil engineering (General), block-based image fusion

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold