Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SIAM Journal on Computing
Article . 2007 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the List and Bounded Distance Decodability of Reed–Solomon Codes

Authors: Cheng, Qi; Wan, Daqing;

On the List and Bounded Distance Decodability of Reed–Solomon Codes

Abstract

For an error-correcting code and a distance bound, the list decoding problem is to compute all the codewords within a given distance to a received message. The bounded distance decoding problem is to find one codeword if there is at least one codeword within the given distance, or to output the empty set if there is not. Obviously the bounded distance decoding problem is not as hard as the list decoding problem. For a Reed-Solomon code $[n,k]_q$, a simple counting argument shows that for any integer $0 0 $. We show that the discrete logarithm problem over ${\bf F}_{q^{h}}$ can be efficiently reduced by a randomized algorithm to the bounded distance decoding problem of the Reed-Solomon code $[q, g-h]_q$ with radius $q - g$. These results show that the decoding problems for the Reed-Solomon code are at least as hard as the discrete logarithm problem over certain finite fields. For the list decoding problem of Reed-Solomon codes, although the infeasible radius that we obtain is much larger than the radius, which is known to be feasible, it is the first nontrivial bound. Our result on the bounded distance decodability of Reed-Solomon codes is also the first of its kind. The main tools for obtaining these results are an interesting connection between the problem of list decoding of Reed-Solomon code, the problem of a discrete logarithm over finite fields, and a generalization of Katz’s theorem on representations of elements in an extension finite field by products of distinct linear factors.

Keywords

discrete logarithm problem, Reed-Solomon codes, 68Q25, Computation Theory and Mathematics, 11Y16, Pure Mathematics, bounded distance decoding algorithm, Computation Theory & Mathematics, math.NT, cs.IT, math.IT, list decoding algorithm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
Green
bronze