Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Underground Spacearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Underground Space
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Underground Space
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

TIM-FEM-ML synthetic technology for longitudinal optimization of tunnel excavated in the interlayered rock mass

Authors: Hui Li; Weizhong Chen; Xiaoyun Shu; Xianjun Tan; Qun Sui;

TIM-FEM-ML synthetic technology for longitudinal optimization of tunnel excavated in the interlayered rock mass

Abstract

The layout of underground engineering objects significantly influences the stability of the surrounding rock mass and construction safety. Despite advancements toward intellectualization and informatization in design optimization and safety assessments, mechanical analysis-based engineering computations still face certain impediments. Consequently, this paper proposes a comprehensive framework integrating tunnel information modelling (TIM), finite element method (FEM) and machine learning (ML) technology to optimize the tunnel longitudinal orientation. It also delves into the specifics of addressing the challenges associated with each technology. The framework encompasses three phases: parametric modelling based on TIM, automatic numerical simulation based on FEM, and intelligent optimization leveraging ML. Initially, geometric models of the geological formations and engineering structures are constructed on the TIM platform. Subsequently, data conversion is facilitated through the proposed transformation interface. Python codes are programmed to realize automatic processing of numerical simulation and results are extracted to the ML algorithm for the prediction model. An optimization algorithm is implanted in the numerical stream file to retrieve the optimal relative intersection angle between the tunnel axis and the trend of rocks. A case study is conducted to evaluate the feasibility of the proposed framework. Results demonstrate a substantial improvement in design and optimization accuracy and efficiency. This framework holds immense potential to propel the intellectualization and informatization of underground engineering.

Keywords

Tunnel information modeling, Machine learning, Design optimization, TA703-712, Layered rock mass, Engineering geology. Rock mechanics. Soil mechanics. Underground construction, Underground engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold