
Principal response curves analysis (PRC) is widely applied to experimental multivariate longitudinal data for the study of time-dependent treatment effects on the multiple outcomes or response variables (RVs). Often, not all of the RVs included in such a study are affected by the treatment and RV-selection can be used to identify those RVs and so give a better estimate of the principal response. We propose four backward selection approaches, based on permutation testing, that differ in whether coefficient size is used or not in ranking the RVs. These methods are expected to give a more robust result than the use of a straightforward cut-off value for coefficient size. Performance of all methods is demonstrated in a simulation study using realistic data. The permutation testing approach that uses information on coefficient size of RVs speeds up the algorithm without affecting its performance. This most successful permutation testing approach removes roughly 95 % of the RVs that are unaffected by the treatment irrespective of the characteristics of the data set and, in the simulations, correctly identifies up to 97 % of RVs affected by the treatment.
longitudinal data, multivariate analysis, multivariate time series, permutation testing, Principal response curves, Aquatic Science, Ecology, Evolution, Behavior and Systematics, variable selection
longitudinal data, multivariate analysis, multivariate time series, permutation testing, Principal response curves, Aquatic Science, Ecology, Evolution, Behavior and Systematics, variable selection
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
