Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Information Fusionarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Information Fusion
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sensor fusion algorithms for orientation tracking via magnetic and inertial measurement units: An experimental comparison survey

Authors: Milad Nazarahari; Hossein Rouhani;

Sensor fusion algorithms for orientation tracking via magnetic and inertial measurement units: An experimental comparison survey

Abstract

Abstract Lightweight and low-cost wearable magnetic and inertial measurement units (MIMUs) have found numerous applications, such as aerial vehicle navigation or human motion analysis, where the 3D orientation tracking of a rigid body is of interest. However, due to the errors in measurements of gyroscope, accelerometer, and/or magnetometer inside a MIMU, numerous studies have proposed sensor fusion algorithms (SFAs) to estimate the 3D orientation accurately and robustly. This paper contributes to these efforts by performing an experimental comparison among a variety of SFAs. Notably, we compared the estimated orientation of 36 SFAs from the complementary filter and linear/extended/complementary/unscented/cubature Kalman filter families with the reference orientation obtained from a camera motion-capture system. The experimental study included data collection with a foot-worn MIMU where nine participants performed various short- and long-duration tasks. We shared the codes and sample of data in https://www.ncbl.ualberta.ca/codes to enable other researchers to compare their works with the literature toward creating a comprehensive online repository for SFAs. To perform a fair comparison, we used the Particle Swarm Optimization routine to find the optimal adaptive gain tuning scheme for each SFAs, as recommended in the literature. Our experimental results showed that gyroscope static bias removal, in general, showed to be effective in reducing the estimation error of SFAs, specifically during long-duration trials. Moreover, our experimental results identified the SFAs with the highest accuracy from each family. We also reported the execution times for the selected SFAs from each family. This paper is among the first experimental comparison studies which provide such breadth of coverage across various SFAs for tracking orientation with MIMUs.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!