Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Relationship Between Code Smells and Traceable Patterns — Are They Measuring the Same Thing?

Authors: Zadia Codabux; Kazi Zakia Sultana; Byron J. Williams;

The Relationship Between Code Smells and Traceable Patterns — Are They Measuring the Same Thing?

Abstract

It is important to maintain software quality as a software system evolves. Managing code smells in source code contributes towards quality software. While metrics have been used to pinpoint code smells in source code, we present an empirical study on the correlation of code smells with class-level (micro pattern) and method-level (nano-pattern) traceable code patterns. This study explores the relationship between code smells and class-level and method-level structural code constructs. We extracted micro patterns at the class level and nano-patterns at the method level from three versions of Apache Tomcat, three versions of Apache CXF and two J2EE web applications namely PersonalBlog and Roller from Stanford SecuriBench and then compared their distributions in code smell versus noncode smell classes and methods. We found that Immutable and Sink micro patterns are more frequent in classes having code smells compared to the noncode smell classes in the applications we analyzed. On the other hand, LocalReader and LocalWriter nano-patterns are more frequent in code smell methods compared to the noncode smell methods. We conclude that code smells are correlated with both micro and nano-patterns.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!