Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/itoec4...
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improved Deadbeat Predictive Current Control Combined Adaptive Super-Twisting Algorithm Based Sliding-Mode Observer for Permanent-Magnet Synchronous Motors Drives

Authors: Fei Zhao; Guangkun Lian; Fei Ban; Zhe Hou;

Improved Deadbeat Predictive Current Control Combined Adaptive Super-Twisting Algorithm Based Sliding-Mode Observer for Permanent-Magnet Synchronous Motors Drives

Abstract

The deadbeat predictive current control (DPCC) is weakened by the one-step control delay and model parameters mismatch issues in the permanent-magnet synchronous motors (PMSM) drive system. In order to acquire the high dynamic and static performance, this paper proposes a sliding-mode observer basing on adaptive super-twisting algorithm (ASTA-SMO) to improve DPCC method. First, the discrete-time model of PMSM considering the parameters mismatch is derived. Second, the conventional DPCC performance is analyzed when these two issues exist. Meanwhile, the second-order sliding-mode observer based on the super-twisting algorithm (STA-SMO) is constructed. Through the observer, the sampled current in DPCC is replaced by prediction currents to compensate one-step delay, and the estimated parameters disturbances compensate the voltage vector from DPCC. To further improve system dynamic performance and obtain stronger robustness, ASTA-SMO is proposed, which can vary the sliding-mode coefficients of STA-SMO online. Moreover, the switching function adopts hyperbolic tangent function to suppress the chattering. Finally, the proposed scheme is simulated, which is testified to have strong robustness and better current tracking performance with the load and motor parameters variations.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!