Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Iraqi Journal for Co...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Iraqi Journal for Computer Science and Mathematics
Article . 2023 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Automated Lion-Butterfly Optimization (LBO) based Stacking Ensemble Learning Classification (SELC) Model for Lung Cancer Detection

Authors: Swapna Rani S; Suganya V; Selvi S; Ashokkumar N; Prema S;

An Automated Lion-Butterfly Optimization (LBO) based Stacking Ensemble Learning Classification (SELC) Model for Lung Cancer Detection

Abstract

Lung cancer is one of the most serious and prevalent cancers in the globe. Early detection of lung cancer can increase a patient's chances of life. Computed Tomography (CT) scan images are difficult for clinicians to utilize in order to determine the stages of cancer. Computer-aided systems can assist researchers in more precisely predicting the stages of lung cancer in recent times. This study demonstrates the use of technology that is made possible by machine learning and image processing to accurately classify and predict the lung cancer from CT images. The existing tumor detection frameworks have the major difficulties in terms of high complexity, overfitting and error prediction. Therefore, the proposed work aims to formulate a simple and accurate automated system for the prediction and classification of lung cancer from CT images. Before classifying the input lung scan image, an adaptive median filtering approach is used to improve its contrast and quality. From the segmented lung parts, the histogram and texture features are derived. The most relevant characteristics are chosen using the Lion-Butterfly Optimization (LBO) method for training and testing operations. Eventually, the input CT picture is correctly predicted as either healthy or disease-affected using the Stacking Ensemble Learning Classification (SELC) algorithm. In this study, a thorough performance evaluation is conducted utilizing several measures in order to analyze the outcomes

Keywords

Lung Cancer, Medical Image Processing, Preprocessing, Segmentation, Feature Extraction, Lion-Butterfly Optimization (LBO), Stacking Ensemble Learning Classification (SELC), and Computer Aided Diagnosis (CAD), Electronic computers. Computer science, QA75.5-76.95

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
gold
Related to Research communities
Cancer Research