Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS Cnrarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Computer Vision
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CNR ExploRA
Article . 2023
Data sources: CNR ExploRA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Article . 2023
License: CC BY
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

BARC: Breed-Augmented Regression Using Classification for 3D Dog Reconstruction from Images

Authors: N Rueegg; S Zuffi; K Schindler; MJ Black;

BARC: Breed-Augmented Regression Using Classification for 3D Dog Reconstruction from Images

Abstract

AbstractThe goal of this work is to reconstruct 3D dogs from monocular images. We take a model-based approach, where we estimate the shape and pose parameters of a 3D articulated shape model for dogs. We consider dogs as they constitute a challenging problem, given they are highly articulated and come in a variety of shapes and appearances. Recent work has considered a similar task using the multi-animal SMAL model, with additional limb scale parameters, obtaining reconstructions that are limited in terms of realism. Like previous work, we observe that the original SMAL model is not expressive enough to represent dogs of many different breeds. Moreover, we make the hypothesis that the supervision signal used to train the network, that is 2D keypoints and silhouettes, is not sufficient to learn a regressor that can distinguish between the large variety of dog breeds. We therefore go beyond previous work in two important ways. First, we modify the SMAL shape space to be more appropriate for representing dog shape. Second, we formulate novel losses that exploit information about dog breeds. In particular, we exploit the fact that dogs of the same breed have similar body shapes. We formulate a novel breed similarity loss, consisting of two parts: One term is a triplet loss, that encourages the shape of dogs from the same breed to be more similar than dogs of different breeds. The second one is a breed classification loss. With our approach we obtain 3D dogs that, compared to previous work, are quantitatively better in terms of 2D reconstruction, and significantly better according to subjective and quantitative 3D evaluations. Our work shows that a-priori side information about similarity of shape and appearance, as provided by breed labels, can help to compensate for the lack of 3D training data. This concept may be applicable to other animal species or groups of species. We call our method BARC (Breed-Augmented Regression using Classification). Our code is publicly available for research purposes at https://barc.is.tue.mpg.de/.

Country
Switzerland
Keywords

Dogs, Breeds, 3D pose estimation, Animal shape estimation, Animal shape estimation; 3D pose estimation; Dogs; Breeds

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
hybrid