Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2012
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Detecting dense communities in large social and information networks with the Core & Peel algorithm

Authors: Marco Pellegrini 0001; Filippo Geraci; Miriam Baglioni;

Detecting dense communities in large social and information networks with the Core & Peel algorithm

Abstract

Detecting and characterizing dense subgraphs (tight communities) in social and information networks is an important exploratory tool in social network analysis. Several approaches have been proposed that either (i) partition the whole network into clusters, even in low density region, or (ii) are aimed at finding a single densest community (and need to be iterated to find the next one). As social networks grow larger both approaches (i) and (ii) result in algorithms too slow to be practical, in particular when speed in analyzing the data is required. In this paper we propose an approach that aims at balancing efficiency of computation and expressiveness and manageability of the output community representation. We define the notion of a partial dense cover (PDC) of a graph. Intuitively a PDC of a graph is a collection of sets of nodes that (a) each set forms a disjoint dense induced subgraphs and (b) its removal leaves the residual graph without dense regions. Exact computation of PDC is an NP-complete problem, thus, we propose an efficient heuristic algorithms for computing a PDC which we christen Core and Peel. Moreover we propose a novel benchmarking technique that allows us to evaluate algorithms for computing PDC using the classical IR concepts of precision and recall even without a golden standard. Tests on 25 social and technological networks from the Stanford Large Network Dataset Collection confirm that Core and Peel is efficient and attains very high precison and recall.

Keywords

Social and Information Networks (cs.SI), FOS: Computer and information sciences, Physics - Physics and Society, F.2.2 Nonnumerical Algorithms and Problems, Computer Science - Data Structures and Algorithms, FOS: Physical sciences, Computer Science - Social and Information Networks, Data Structures and Algorithms (cs.DS), Physics and Society (physics.soc-ph)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green