Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The International Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lirias
Article . 2020
Data sources: Lirias
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The International Journal of Cardiovascular Imaging
Article . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 11 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Distribution of myocardial work in arterial hypertension: insights from non-invasive left ventricular pressure-strain relations

Authors: Loncaric, Filip; Marciniak, Maciej; Nunno, Loredana; Mimbrero, Maria; Fernandes, Joao F.; Fabijanovic, Dora; Sanchis, Laura; +6 Authors

Distribution of myocardial work in arterial hypertension: insights from non-invasive left ventricular pressure-strain relations

Abstract

A index of non-invasive myocardial work (MWI) can account for pressure during the assessment of cardiac function, potentially separating the influence of loading conditions from the influence of the underlying tissue remodelling. The aim is to assess LV function accounted for loading and explore hypertensive MWI distribution by comparing healthy individuals to hypertensive patients without and with localized basal septal hypertrophy (BSH). An echocardiogram was performed in 170 hypertensive patients and 20 healthy individuals. BSH was defined by a basal-to-mid septal wall thickness ratio ≥ 1.4. LV speckle-tracking was performed, and the MWI calculated globally and regionally for the apical, mid and basal regions. An apex-to-base gradient, seen in regional strain values, was preserved in the distribution of myocardial work, with the apical region compensating for the impairment of the basal segments. This functional redistribution was further pronounced in patients with localized BSH. In these patients, segmental MWI analysis revealed underlying impairment of regional work unrelated to acute loading conditions. Non-invasive MWI analysis offers the possibility to compare LV function regardless of blood pressure at the time of observation. Changes in MWI distribution can be seen in hypertension unrelated to the load-dependency of strain. Accentuated functional changes affirm the role of BSH as an echocardiographic marker in hypertension.

Countries
Belgium, United Kingdom, Croatia, Spain
Keywords

Male, Cardiac & Cardiovascular Systems, interna medicina, Hypertension / complications, SYSTEMIC HYPERTENSION, Ventricular Function, Left, Ventricular Dysfunction, Left, basal septal hypertrophy ; hypertension ; myocardial work ; remodeling ; speckle tracking, SEPTAL HYPERTROPHY, Hypertrophy, Left Ventricular / diagnostic imaging, Myocardial work, 1102 Cardiorespiratory Medicine and Haematology, INDEX, Basal septal hypertrophy, remodeling, Hypertrophy, Left Ventricular / etiology, Ventricular Remodeling, Radiology, Nuclear Medicine & Medical Imaging, Ventricular Dysfunction, Left / etiology, Middle Aged, basal septal hypertrophy, Remodeling, myocardial work, Hypertrophy, Left Ventricular / physiopathology, Kliničke medicinske znanosti, Europe, Nuclear Medicine & Medical Imaging, speckle tracking, Biomedicina i zdravstvo, Echocardiography, Hypertension, HEART, Female, Hypertrophy, Left Ventricular, ECHOCARDIOGRAPHY, 3201 Cardiovascular medicine and haematology, Life Sciences & Biomedicine, hypertension, 610, Ventricular Dysfunction, Left / diagnostic imaging, Hypertension / physiopathology, WALL STRESS, Ventricular Dysfunction, Left / physiopathology, DEFORMATION, Predictive Value of Tests, Clinical Medical Sciences, Internal Medicine, Ventricular Pressure, Humans, Arterial Pressure, Biomedicine and Health Sciences, Speckle tracking, Science & Technology, Hypertension / diagnosis, QUANTIFICATION, Case-Control Studies, Cardiovascular System & Cardiology, REGIONAL STRESS

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
Green
bronze