
For the large-scale distributed graph mining, the graph is distributed over a cluster of nodes, thus performing computations on the distributed graph is expensive when large amount of data have to be moved between different computers. A good partitioning of distributed graph is needed to reduce the communication between computers and scale a system up. Existing graph partitioning algorithms incur high computation and communication cost when applied on large distributed graphs. A efficient and scalable partitioning algorithm is crucial for large-scale distributed graph mining.In this paper, we propose a novel parallel multi-level stepwise partitioning algorithm. The algorithm first efficiently aggregates the large graph into a small weighted graph, and then makes a balance partitioning on the weighted graph based on a stepwise minimizing RatioCut Algorithm. The experimental results show that our algorithm generally outperforms the existing algorithms and has a high efficiency and scalability for large-scale graph partitioning. Using our partitioning method, we are able to greatly speed up PageRank computation.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
