Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Сучасний стан науков...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

INFORMATION TECHNOLOGY FOR RECOGNITION OF ROAD SIGNS USING A NEURAL NETWORK

Authors: Yashina, Elena; Artiukh, Roman; Рan, Nikolai; Zelensky, Andrei;

INFORMATION TECHNOLOGY FOR RECOGNITION OF ROAD SIGNS USING A NEURAL NETWORK

Abstract

The subject of the study is the methods and tools for automation of recognition of road signs at the level of software implementation. Detection of road signs is associated with the processing of a significant amount of video data in real time, which requires significant computing power. Therefore, the purpose of the work is to automate the process of recognition of road signs for filling the databases of navigators, which will allow operatively provide drivers with up-to-date information on established road signs. The following tasks are solved: analysis of methods and software for image recognition; development of the search algorithm for characters in the video frame; implementation of the definition of the contour of the sign; realization of a convolutional neural network for recognition of a sign; testing of applied information technology work. Methods are used: convolutional neural networks; Viola-Jones's method for recognizing objects in an image, the Bousting method as a way to accelerate the recognition process with a large amount of information. Results: Different approaches to the identification of symbols on images, various software tools for object recognition, image transformation for optimal fragment are considered. An algorithm for detecting and recognizing the sign is developed. Using the Viola-Jones method, a fast way to calculate the values of attributes using the integral representation of an image is implemented. The recognition process takes place by constructing a convolutional neural network. Features of the layers of the roller network are considered. Schematically illustrated script recognition. The process of interaction of the system with different data sources is represented by a diagram of precedents. The main result is the creation of information technology for the automated recognition of road signs. The algorithm of its work is presented in the form of a sequence diagram. Conclusions. Using the applied application information technology, recognition of road signs is made with an average probability of 88%, which allows automating the process of filling the database of navigators to a large extent, to increase the reliability and productivity of the given process.

Keywords

image recognition, распознавание изображений; нейронная сеть; компьютерное зрение; информационная технология, information technology, neural network, Engineering economy, image recognition; neural network; computer vision; information technology, TA177.4-185, computer vision, розпізнання зображень; нейронна мережа; комп’ютерний зір; інформаційна технологія

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold