Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Repository of the Cz...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.21136/panm....
Article . 2025 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simplified mathematical models of fluid-structure-acoustic interaction problem motivated by human phonation process

Authors: Valášek, J. (Jan); Sváček, P.;

Simplified mathematical models of fluid-structure-acoustic interaction problem motivated by human phonation process

Abstract

Human phonation process represents an interesting and complex problem of fluid-structure-acoustic interaction, where the deformation of the vocal folds (elastic body) are interplaying with the fluid flow (air stream) and the acoustics. Due to its high complexity, two simplified mathematical models are described - the fluid-structure interaction (FSI) problem describing the self-induced vibrations of the vocal folds, and the fluid-structure-acoustic interaction (FSAI) problem, which also involves aeroacoustic phenomena. The FSI model is based on the incompressible Navier-Stokes equations in the ALE formulation coupled with the linear elasticity model. Both the fluid and structural models are approximated using finite element methods, and the influence of different inlet boundary conditions is discussed in detail. For the FSAI model, an aeroacoustic hybrid approach is used, incorporating the Lighthill analogy or the perturbed convective wave equation. The acoustic results strongly depend on the proper choice of the computational acoustic domain (i.e. vocal tract model). Further, the spatial and frequency distributions of sound sources computed from the FSI solution are compared for both used approaches. The final frequency spectra of acoustic pressure at the mouth position are also analyzed for both approaches.

Related Organizations
Keywords

flow-induced vibrations, aeroacoustic analogy, Navier-Stokes equations, human phonation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green