Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Ameri...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the American Chemical Society
Article . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BiPrints
Article . 2022
License: "In Copyright" Rights Statement
Data sources: BiPrints
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Publications at Bielefeld University
Article . 2022
License: "In Copyright" Rights Statement
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reticular Nanoscience: Bottom-Up Assembly Nanotechnology

Bottom-Up Assembly Nanotechnology
Authors: Jacopo Andreo; Romy Ettlinger; Orysia Zaremba; Quim Peña; Ulrich Lächelt; Roberto Fernández de Luis; Ralph Freund; +6 Authors

Reticular Nanoscience: Bottom-Up Assembly Nanotechnology

Abstract

The chemistry of metal-organic and covalent organic frameworks (MOFs and COFs) is perhaps the most diverse and inclusive among the chemical sciences, and yet it can be radically expanded by blending it with nanotechnology. The result is reticular nanoscience, an area of reticular chemistry that has an immense potential in virtually any technological field. In this perspective, we explore the extension of such an interdisciplinary reach by surveying the explored and unexplored possibilities that framework nanoparticles can offer. We localize these unique nanosized reticular materials at the juncture between the molecular and the macroscopic worlds, and describe the resulting synthetic and analytical chemistry, which is fundamentally different from conventional frameworks. Such differences are mirrored in the properties that reticular nanoparticles exhibit, which we described while referring to the present state-of-the-art and future promising applications in medicine, catalysis, energy-related applications, and sensors. Finally, the bottom-up approach of reticular nanoscience, inspired by nature, is brought to its full extension by introducing the concept of augmented reticular chemistry. Its approach departs from a single-particle scale to reach higher mesoscopic and even macroscopic dimensions, where framework nanoparticles become building units themselves and the resulting supermaterials approach new levels of sophistication of structures and properties.

Keywords

Metal-Organic Frameworks/chemistry, 210006 Nanotechnology, ROOM-TEMPERATURE SYNTHESIS, Catalysis, POROUS COORDINATION POLYMER, METAL-ORGANIC FRAMEWORKS, 210006 Nanotechnologie, IONIC CONDUCTOR, CHEMISTRY, NANOPARTICLES, PARTICLES, Nanotechnology, DRUG-DELIVERY, Metal-Organic Frameworks, MOF, FUNCTIONALITY

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
75
Top 1%
Top 10%
Top 1%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!