Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nuclear Engineering ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nuclear Engineering and Technology
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Radiation dosimetry of 89Zr labeled antibody estimated using the MIRD method and MCNP code

Authors: Saeideh Izadi Yazdi; Mahdi Sadeghi; Elham Saeedzadeh; Mostafa Jalilifar;

Radiation dosimetry of 89Zr labeled antibody estimated using the MIRD method and MCNP code

Abstract

One important issue in using radiopharmaceuticals as therapeutic and imaging agents is predicting different organ absorbed dose following their injection. The present study aims at extrapolating dosimetry estimates to a female phantom from the animal data of 89Zr radionuclide accumulation using the Sparks-Idogan relationship. The absorbed dose of 89Zr radionuclide in different organs of the human body was calculated based on its distribution data in mice using both MIRD method and the MCNP simulation code. In this study, breasts, liver, heart wall, stomach, kidneys, lungs and spleen were considered as source and target organs. The highest and the lowest absorbed doses were respectively delivered to the liver (4.00E-02 and 3.43E-02 mGy/MBq) and the stomach (1.83E-03 and 1.66E-03 mGy/MBq). Moreover, there was a good agreement between the results obtained from both MIRD and MCNP methods. Therefore, according to the dosimetry results, [89Zr] DFO-CR011-PET/CT seems to be a suitable for diagnostic imaging of the breast anomalies for CDX-011 targeting gpNMB in patients with TNBC in the future.

Related Organizations
Keywords

Breast cancer, PET/CT, MIRD Method, Dosimetry, MCNP Simulation code, TK9001-9401, Nuclear engineering. Atomic power, 89Zr

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
gold