Downloads provided by UsageCounts
handle: 10261/360450
Abstract Climate change is expected to intensify drought in the Mediterranean region. Previous studies indicate that tree species mixing may reduce the water stress. Our study investigates the response to past drought events of four co-occurring Mediterranean species: Pinus pinea L. (stone pine), Pinus pinaster Ait. (maritime pine), Juniperus thurifera L. (Spanish juniper) and Quercus ilex L (holm oak). The study was performed at an interannual scale, both in monospecific and mixed stands. Annual tree ring widths data measured on increment cores and stem discs obtained from 281 trees were used to quantify the responses to drought events using complementary resilience indices. Additionally, we assessed tree intra- and inter-specific competition impact over the past 25 years. We fitted and compared generalised linear mixed models to determine the influence of species identity, stand composition as intra-specific and inter-specific competition on complementary resilience indices and annual basal area increment. The co-existence with other species enhanced the resistance to drought of the stone pine as the resilience capacity of the Spanish juniper. Conversely, maritime pine’s drought resistance declined considerably in mixed stands. Notably, only the anisohydric species Spanish juniper and holm oak were able to return to pre-disturbance growth rates after the drought. The influence of competition on tree growth was found to differ according to the hydrological conditions of each year and varied based on the specific source of competition. Our study showed that mixed stands in the Spanish Northern Plateau, especially with holm oak and Spanish juniper, are more resilient to prolonged droughts due to spatio-temporal complementarity and subsequent competition reduction. That is another reason for which such composed mixed stands should be promoted in the arid conditions of the Spanish Northern Plateau.
Mediterranean forests, Generalised linear mixed models, Complementary resilience indices, Mixed forests, Niche complementarity
Mediterranean forests, Generalised linear mixed models, Complementary resilience indices, Mixed forests, Niche complementarity
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 47 | |
| downloads | 27 |

Views provided by UsageCounts
Downloads provided by UsageCounts